
Mario Plebani*, Martina Zaninotto, Sandro Giannini, Stefania Sella, Maria Fusaro, Giovanni Tripepi,
Maurizio Gallieni, Markus Herrmann and Mario Cozzolino

Vitamin D assay and supplementation: still
debatable issues
https://doi.org/10.1515/dx-2024-0147
Received September 3, 2024; accepted September 6, 2024;
published online September 20, 2024

Abstract: Over the last decades, in addition to the
improvement of pathophysiological knowledge regarding
the role and mechanisms of action of vitamin D, there
has been a progressive advancement in analytical technol-
ogies for its measurement, as well as in methodological
standardization. A significant number of scientific works,
meta-analyses, and guidelines have been published on the
importance of vitamin D and the need for supplementation
in deficient individuals. However, it appears necessary to
clarify the fundamental elements related to the measure-
ment of vitamin D (both at the strictly analytical and
post-analytical levels) and the scientific evidence related to
the efficacy/safety of supplementation. In particular, there
is a need to discuss current recommended levels for defi-
ciency, insufficiency and possible toxicity in the light of
evidence from standardization projects. Additionally, given
the important interrelations between vitamin D, para-
thyroid hormone (PTH), and fibroblast growth factor-23
(FGF23), the analytical issues and clinical utility of these
biomarkers will be discussed.
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Introduction

Vitamin D deficiency remains a highly prevalent condition
in developed countries that impairs bone mineralization
and skeletal muscle function [1, 2]. In addition to its
fundamental role in the regulation of calcium and phos-
phorus homeostasis, numerous studies over the last few
decades have demonstrated that vitamin D has pleiotropic
functions affecting virtually all organs and tissues. For
example, vitamin D modulates cell growth and differentia-
tion, immunity regulation, glucose homeostasis, cognitive
functions, and the activity of many hormones, impacting
the association between vitamin deficiency and various
pathological conditions, including cardiovascular diseases
[3–5]. In these decades, alongside the improvement of
pathophysiological knowledge, there has been a progressive
advancement in analytical technologies for its measure-
ment, as well as in assay standardization. A significant
number of scientific works, meta-analyses, and guidelines
have been published on the importance of the vitamin D
and the need for supplementation in deficient individuals.
However, there is a clear perception of a lack of clarity on
fundamental elements related to the measurement of
vitamin D (both at the strictly analytical and post-analytical
levels, especially related to the expression of concentrations
with different measurements units), as well as on the
scientific evidence related to the efficacy/safety of supple-
mentation. This paper aims to clarify the fundamental
aspectsmentioned above so they are brought to the attention
of both the clinical world and laboratory medicine
professionals, as well as other stakeholders such as patient
representatives, and, of course, administrators and policy
makers. Additionally, the document aims to provide
evidence on the use of integrative and complementary tests
to the measurement of the traditional vitamer 25 (OH)D,
that is the 25-hydroxylated form.

Vitamin D determination

There is broad consensus and evidence that the study of
vitamin D status should be carried out through the deter-
mination of the 25-hydroxylated form (25-OH vitamin D) for
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four main reasons: a) its half-life is sufficiently long to allow
the determination of the “stable” portion in the blood
and thus a reliable indicator of vitamin status; b) its
concentration in the blood is 1,000 times greater than that of
the di-hydroxylated form [1α,25(OH)2], allowing for the
availability of measurement methods with adequate
analytical sensitivity; c) its concentration is the sum of
endogenous production and the intake of the vitamin from
the diet, thus enabling a reliable estimate of the “overall”
vitamin status; d) total serum 25(OH)D is also the sum of
25(OH)D3 and 25(OH)D2 [6–8]. Therefore, this vitamer is
the widely accepted biomarker of vitamin D status and its
determination is carried out for two main reasons: a) to
determine the nutritional status of the vitamin; b) tomonitor
the effectiveness of supplementation.

Methods for analytical
determination of vitamin D

The determination of the vitamer 25(OH)D presents
numerous analytical challenges due to its strong binding
to the vitamin D-Binding Protein (VDBP), the need to deter-
mine the equimolar amount of 25(OH)D2 and 25(OH)D3, the
coexistence of numerous substances with similar chemical
compositions that can cause cross-reactions, and the matrix
effects such as interference from heterophilic antibodies
or changes in protein composition [9]. Analytical techniques
for determining vitamin D can be divided into two major
groups: a) methods with complete removal of proteins
and lipids before the analytical phase using organic sol-
vents, including (liquid chromatography-mass spectrometry
(LC-MS/MS), high performance liquid chromatography
(HPLC), and radioimmunoassays (RIA); b) automated im-
munoassays that do not use organic solvents but alternative
strategies to release the vitamin from the binding proteins
[9–12]. The first method for determining 25(OH)D was pub-
lished in 1971 and was a competitive method using rachitic
rat serum as a source of the binding protein [13]. In the late
1970s, several HPLC methods were developed, and in 1984,
the first radioimmunoassay based on the use of a specific
antibody [14] was introduced. Subsequently, to overcome
issues related to handling radioisotopes, enzyme immuno-
assays (EIA, ELISA) and chemiluminescent immunoassays
(CLIA) were developed [15]. These methods have become
widely used in clinical laboratories due to progressive
automation. However, these methods for long suffered from
poor standardization, preventing comparability of results
obtained with different methods and from different labo-
ratories. To address these issues, in 2010, the National

Institutes of Health (NIH) initiated the vitamin D Standard-
ization Program (VDSP) in collaboration with the National
Institute of Standards and Technology (NIST), the Centers for
Disease Control and Prevention (CDC), Ghent University
(Belgium), the American Association for Clinical Chemistry
(AACC), the IFCC, and nutritional surveillance programs
from various countries, including Australia, Canada, Ger-
many, Ireland, Mexico, South Korea, the United Kingdom,
and the USA [16]. Thanks to this initiative, three reference
measurement procedures (RMP) based on ID-LC-MS/MS
and recognized by the Joint Committee for Traceability in
Laboratory Medicine (JCTLM) are now available. Addition-
ally, the National Institute of Standardization (NIST) devel-
oped a reference material (SRM) 972 and 972a, representing
the second essential element for metrological traceability
and standardization ofmeasurement methods. Although the
procedures of the reference methods are too complex and
time-consuming for routine clinical practice, they provide
reference (target) values that can be used to standardize or
re-standardize methods used in clinical practice and make
the results comparable. The issue of standardizing methods
and the impact of this standardization on decision levels,
which identify deficiency and desirable levels, is crucial
given the significant discrepancies between the results of
clinical studies conducted in recent years without method-
ological standardization. The lack of standardization has
been shown to significantly alter the recommended levels
for defining deficiency and insufficiency. For example,
Binkley et al., commenting on two large clinical studies – the
Third National Health and Nutrition Examination Survey
(NHANES III, 1988–1994) and the German Health Interview
and Examination Survey for Children and Adolescents
(KIGGS, 2003–2006) – documented significant differences
after reanalyzing the samples with a standardized method.
After standardization, the percentage of vitamin D values
below 30, 50, and 70 nmol/L in the KIGGS study increased
from 28 to 47 %, 13 to 87 %, and 64 to 85 %, respectively,
while in the NHANES III study, the percentage of values
below 30, 50, and 75 nmol/L increased from 4 to 6 %, 22 to
31 %, and 55 to 71 %, respectively [17]. Other authors have
reported similar results [18]. These significant differences
lead to the conclusion that the levels recommended to
date for identifying deficiency, insufficiency, and toxicity
of vitamin D are compromised by the lack of method
standardization. Consequently, new clinical trials with valid
experimental designs and standardized methods need to be
planned to accurately define the decision limits for defi-
ciency, insufficiency, and possible toxicity of vitamin D. It
also seems appropriate to revisit the literature data from
recent years in light of these new findings, i.e., the variations
related to methodological standardization. Regarding the
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methods to be used in the clinical laboratory, the choice
between an automated immunoassay and an LC-MS/MS
method depends on various factors such as the number of
requests, the availability of qualified personnel in mass
spectrometry techniques, and the specific instrumentation.
In addition, for LC-MS/MS methods costs and turnaround
time represent additional concerns. Generally, data from
external quality assessment programs demonstrate a
continuous improvement in analytical performance: LC-MS/
MS methods generally appear superior, with lower bias
towards reference methods, but they exhibit greater vari-
ability reflecting existing differences in instrumentation,
chromatographic separation, and calibration [19]. Recent
data show that only 20 % of laboratories participating in
external quality assurance (EQA) programs use LC-MS/MS
methods, highlighting that automated immunoassays are
still themost widely used [10]. Very recently, Herrmann et al.
proposed an innovative approach for diagnosing functional
vitamin D deficiency based on the combined measurement
of 25(OH)D and its main catabolite (24, 25-dihydroxy-vitamin
D) to calculate the so-called vitamin D metabolite ratio
(VMR). According to the authors, the VMR allows for better
identification of individuals with vitamin deficiency, as it is
associated with significantly higher levels of PTH, acceler-
ated bone metabolism, and mortality [20]. These data,
undoubtedly of interest, require further confirmation in
clinical studies using appropriate experimental protocols.
Conversely, the proposal to measure the free fraction of
25(OH)D, given that about 85–90 % of the circulating
fraction is bound to the specific protein (VDBP) and 10–15 %
to albumin, has been shown to have limited clinical utility
for various reasons and could be reserved only for in-
dividuals with clinical conditions that significantly alter
the concentration or affinity of the vitamin D-binding
protein, such as cirrhosis, pregnancy, or acute inflammatory
diseases [21–24].

Vitamin D measurement and
supplementation

A series of scientific studies published in recent years
[25, 26] and campaigns such as “Choosing Wisely” (https://
www.choosingwisely.org) which, started in 2012, highlighted
serious concern on the issue of appropriateness in labora-
torymedicine, as vitamin Dwas placed at the top of the list of
the so-called “inappropriate laboratory tests”. In some
Countries, including Italy, scientific organizations and reg-
ulatory bodies developed guidelines and recommendations
to regulate both test request and the prescription of vitamin

D supplementation. In particular, the AIFA (Agenzia Italiana
del Farmaco) Note 96, initially introduced in 2019 and
updated in February 2023 [27], was released to regulate
reimbursement of vitamin D supplementation. Other
guidelines, such as those from SIOMMMS (Italian Society for
Osteoporosis, Mineral Metabolism, and Skeletal Diseases)
released in 2022 [28], and the more recently published
Endocrine Society Clinical Practice guideline [29] agree to
not recommend screening for 25-(OH)D levels in the general
population due to a lack of favorable cost/benefit evidence.
These recommendations, however, have been subject to
comments and criticisms from various organizations and
scientific societies, highlighting both analytical and clinical
issues [30]. Specifically, from a purely analytical point of
view, the criticisms are essentially:
a) The evidence that the standardization of methods used

by clinical laboratories is modest, especially before
the identification of a reference method and studies
demonstrating the need to recalibrate commercial
methods and avoid the bias compared to the reference
method, resulting in significant differences in results
that could reflect inadequacy concerning recommended
decision levels. This means that currently adopted
decision limits are affected by a significant analytical
bias and that further studies are needed to establish
evidence-based decision limits by adopting reference
measurement procedures (RPMs) and/or methods stan-
dardized against these RMPs.

b) The non-uniformity of measurement units in published
papers and guidelines which translate into the identifi-
cation of two different measurement units, with the
consequent possible sources of error and confusion.

c) Some recommendations establish a single threshold
value (50 nmol/L or 20 ng/mL) tied to reimbursement,
while clinical laboratories used different levels closer to
those recommended by the Endocrine Society, for
example, 75 nmol/L [28].

Based on currently available evidence, decision limits
that should be adopted and reported by clinical
laboratories are shown in Table 1. Although the issues of
vitamin D assay/decision levels and supplementation are
clearly distinct, unfortunately they have been mixed up.
Therefore, focusing on the latter, it should underline that
some regulatory documents which discourage the vitamin D
supplementation are mainly based on the results of two
large randomized clinical trials, the American VITAL study
[25] and the European DO-HEALTH study (Bischoff-Ferrari
HA et al.) [26]. In both studies, vitamin D supplementation
did not show to prevent fracture events, and for this
reason, the prescribability for reimbursement purposes
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was reduced from 50 to 30 nmol/L (or from 20 to 12 ng/mL) of
the maximum circulating 25(OH)D level, with or without
specific symptoms and in the absence of other associated
risk conditions. However, both cited studies present signifi-
cant limitations. In the first study, LeBoff and colleagues
tested the hypothesis that vitamin D3 supplementation
might reduce fracture risk compared to placebo. Partici-
pants in this study were not enrolled on the basis of
vitamin D deficiency (average vitamin D level 30 ng/mL), low
bone mass, or osteoporosis. The primary endpoints were
total, non-vertebral, and hip fractures reported by partici-
pants and validated by an independent scientific committee.
Supplemental vitamin D3, compared to placebo, did not
show a significant effect on total fractures (p=0.70), non-
vertebral fractures (p=0.50), or hip fractures (p=0.96). In a
subgroup of 16,757 participants out of 25,871 (about 65 %),
baseline 25(OH)D concentrations were also available. The
average (SD) 25(OH)D concentrations were 76.6 ± 25 nmol/L
(30.7 ± 10 ng/mL) and 87 % of patients had 25(OH)D levels
>50 nmol/L (>20 ng/mL) [25]. This means that about 9 out
of 10 patients enrolled in this ancillary VITAL study had a
25(OH)D concentration >20 ng/mL, a cut-off above which,
based on epidemiological considerations, no benefit from
supplementation on fracture incidence rates was expected
[25]. The same bias regarding vitamin D levels is also found
in the other study considered by AIFA [26]. Tripepi and coll.,
after an exhaustive analysis of the studies considered by
AIFA to draft the determination, highlight how crucial it is to
investigate the effect of vitamin D supplementation on
clinical outcomes within a range of 25(OH)D values where a
beneficial effect of the same supplementation is at least
presumable based on large-scale observational studies. In
other words, etiological research, aimed at analyzing
cause-effect relationships through interventional studies,
must maintain consistency between its observational and
experimental components [31].

Regarding excess values, some guidelines are based on
only two studies [25, 26], that state that 25-(OH) D values
>112 nmol (45 ng/mL) are associated with a progressive
increase in the risk of adverse events, including mortality.
More recent studies document a progressive reduction in

mortality as 25-(OH) blood levels increase up to about
50 nmol/L, followed by a “steady state” up to values of
125 nmol/L, without identifying threshold values associated
withmortality risk from various causes [32]. Themost recent
prospective study by Takacs and coll. did not find any in-
crease in the risk of falls, adverse events, hypercalcemia,
and bone metabolism alterations up to values of 150 nmol/L
[33]. The reported supposed risk of prostate and pancreatic
cancer for values >100 nmol/L, noted by AIFA Note 96, has
not been confirmed in more recent studies that, instead,
show a reduction in the risk of metastatic cancer
incidence and cancer mortality for the same blood levels
(<100 nmol/L) [34, 35]. Therefore, some guidelines consider
vitamin D supplementation mandatory in all the categories
of individuals/patients shown in Table 2, regardless of
the vitamin D blood levels; however, they recommend
measuring it when “essential for the clinical management of
the patient, for example, for differential diagnosis or after
starting supplementation to ascertain the achievement of
optimal levels after 3–6 months”.

When is the request and determination of
25-(OH)D indicated?

The second issue to be discussed is when is the request
and determination of 25-(OH)D indicated? Firstly, some key

Table : Decision limits for (OH)D assay (from ref. []).

. Deficiency: < nmol/L ( ng/mL)
. Insufficiency: – nmol/L (– ng/mL)
. Adequacy: – nmol/L (– ng/mL)
. Optimal levels in patients with osteoporosis or clinical conditions at risk

of Vit D deficiency: – nmol/L (– ng/mL)
. Excess: > nmol/L ( ng/mL)

Table : Subjects at risk of vitamin D deficiency according to the clinical
evaluation (from ref. [], modified).

Older people
Housebound people:
–Disabled people;
–Institutionalized people;

People working long time indoors:
People with dark skin
People with chronic/debilitating diseases:
–Diabetes;
–Chronic kidney disease
–Gastrointestinal malabsorptive syndromes;
–Parathyroid disorders;
–Liver diseases;

Obese people, particularly those with very high levels of Body Mass
Index (BMI)
People after bariatric surgery
People taking drugs increasing vitamin D catabolism:
–Carbamazepine;
–Desamethasone;
–Rifampicin;
–Sironolattone;

Childrens of mother with vitamin D deficiency

4 Plebani et al.: Vitamin D assay and supplementation



principles and requirements must be clearly identified to
make the determination of vitamin D appropriate, which are
not clearly outlined in some guidelines:
a) Given the variability of vitamin levels linked to

seasonality, the assessment of vitamin status should
be recommended during the period between the end
of winter and the beginning of summer [30].

b) The results obtained by clinical laboratories, whether
performed with immunoassays or LC-MS methods,
show a bias compared to the reference method. The
measurement uncertainty that can be reasonably pro-
posed is to consider a variability equal to ±10 %
compared to the reported value [19]. This aspect is
particularly important when the value is close to the
decision level, especially the level identifying “defi-
ciency,” i.e., a value <30 nmol/L (12 ng/mL).

c) Finally, it is recommended to harmonize the measure-
ment units, identifying nmol/L as the metrologically
correct and most internationally adopted unit

Ultimately, the determination of vitamin D appears appro-
priate and recommended:
– In all cases of clinical suspicion of osteomalacia

(confirmation of the diagnostic hypothesis and/or dif-
ferential diagnosis) and should be repeated at intervals
of 3–6 months.

– In all cases of suspected hyperparathyroidism, both
primary and secondary, and in patients diagnosed with
this condition.

– In patients with chronic renal insufficiency for the
evaluation and monitoring of chronic kidney diseases
with mineral and bone metabolism disorders (CKD-
MBD).

– In pediatric subjects with risk factors for deficiency,
with growth delays, and in the case of long periods of
hospitalization/institutionalization.

It should be noted that a recently published review,
which summarizes the analytical issues and clinical
implications of vitamin D determination in light of the
ongoing problems, concludes by suggesting the importance
of further studies on supplementation that use standardized
methods and enroll only patients with vitamin D deficiency,
reinforcing previously reported concerns [36]. In addition,
given the important interrelations between vitamin D and
other measurands (e.g. calcium, phosphate, parathyroid
hormone (PTH), fibroblast growth factor 23, 1,25(OH)2D, in
the regulation of bone metabolism, an integrated inter-
pretation of all laboratory biomarkers is now recommended.

1,25 Dihydroxyvitamin D
(1,25(OH)2D)

While there is broad consensus on using the determination
of the biological form 25-hydroxylated (25-OH vitamin D), it
is known that the biologically active form of the vitamin is
the 1,25-dihydroxylated form [1,25(OH)2D]. This evidence, in
turn, raises the question of whether and when the deter-
mination of the latter form should be combined with that of
25-OH vitaminD. Determination of 1,25(OH)2D is significantly
more complicated than that of 25(OH)D because its concen-
tration in serum/plasma is much lower. Moreover, there are
neither reference materials nor a reference measurement
procedure available. The first method for determining
1,25(OH)2D, developed in 1974, was a radioreceptor assay
[25], while in subsequent years other determination tech-
niques such as HPLC, EIA, Gas Chromatography-Mass Spec-
trometry, and finally LC-MS/MS were developed [37, 38]. The
development of automated immunoassays [4, 39] has
significantly changed the situation, making the determina-
tion of this vitamer available in many clinical laboratories.
The most recent data from EQA programs demonstrate that
75 % of participants use automated methods, 15 % manual
immunoassays, and only 9 % LC-MS/MS techniques [10].
Some automated immunoassays, particularly the one pro-
posed by DiaSorin and applied to the Liaison XL instrument,
significantly correlate with LC-MS/MS methods and offer
clear advantages in routine diagnostic management, such as
high productivity and savings in time and human resources.
Therefore, their development can expand and improve the
clinical use of 1,25(OH)2D determination [40, 41]. Unlike
25(OH)D, decision levels have not been identified, and
reference intervals vary depending on the method used.
In adults, the range of values obtained with a radio-
immunological method varies between 43 and 168 pmol/L,
while with an automated immunometric method (IDS iSYS),
the range is between 63 and 228 pmol/L [39], and with
the DiaSorin Liaison XL method, the range varies between
77 and 471 pmol/L in pediatric subjects aged 0–1 year, 113–
363 pmol/L between one and three years, and 108–246 pmol/
L in children over three years of age [42, 43]. In addition,
higher serum levels of 1,25(OH)2D have been observed in
individuals of African descent, which have been associated
with higher PTH levels. To date, the clinical utility of deter-
mining 1,25(OH)2D is poorly recognized. Its serum concen-
tration has little correlation with vitamin status and is
instead strongly regulated by PTH. Thus, its determination
has been considered useful in the evaluation of patients
with hypercalcemia of unknown origin, sarcoidosis, pseudo-
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vitamin D deficiency, rickets, tumor-induced osteomalacia,
hyperparathyroidism, and CYP24A1 deficiency situations.
Additionally, its determination can be useful in the differ-
ential diagnosis of FGF23-dependent phosphopenic rickets
[44]. Decreased values are found in CKD and hyperpara-
thyroidism, while serum levels increase in sarcoidosis and
tuberculosis [44]. Certain drugs reduce 1,25(OH)2D levels,
including some antifungals used to treat hypercalcemia
associated with tuberculosis. During pregnancy, circulating
levels increase due to the induction of 1α-hydroxylase ac-
tivity, which is also expressed at the placental level. Certain
genetic mutations influence 1,25(OH)2D levels and cause rare
bone metabolic diseases, including hereditary vitamin
D-resistant rickets (VDR), type A vitamin D-dependent
rickets (CYP7B1), type B (CYP2R1), and idiopathic infantile
hypercalcemia (CYP24A1). Some mutations of the metal-
loprotease PHEX also cause X-linked hypophosphatemia,
characterized by normal-low concentrations of 1,25(OH)2D
[45]. However, recent experimental data [46, 47] provide
useful elements for a possible revision of the current rec-
ommendations on its use and the combined use of both
biological forms, in addition to the clinical situations and
conditions in which 1,25(OH)2D determination is currently
suggested.

New experimental evidence

It is known that the hydroxylation of both biological
forms (vitamin D2 and vitamin D3) occurs in the liver
due to the enzyme D-25-hydroxylase (CYP2R1). The further
hydroxylation into the biologically active form, 1,25(OH)2D,
was previously thought to occur only in the kidneys via
the action of 25-hydroxyvitamin D-1-alpha-hydroxylase
(CYP27B1). It is important to note that this second hydrox-
ylation depends on circulating parathyroid hormone (PTH)
levels, confirming the complex regulation mechanisms of
the formation of the biological forms of vitamin D. More
recently, however, evidence has emerged showing the for-
mation of 1,25-dihydroxyvitamin D not only in the kidneys
but also in many other types of cells, including endothelial
cells, cardiomyocytes, vascular smooth muscle cells, astro-
cytes, and microglia. These forms do not enter circulation
but still regulate metabolism through paracrine and/or
autocrine actions. In particular, a recent review reports
evidence from numerous studies showing that the “second”
hydroxylation by the enzyme 25-hydroxyvitamin D-1-alpha
hydroxylase (CYP27B1) occurs not only in renal tubules [46].
Specifically, it has been observed that 1,25-dihydroxyvitamin
D3 can protect various types of cells from different types
of stress, such as hydrogen peroxide, radiation, and high

glucose levels. Additionally, it has an anti-fibrotic effect on
cardiomyocytes and fibroblasts. Based on this recently
collected data, clinical studies will be needed to better un-
derstand if these new pathophysiological insights could
lead to revised and expanded uses in clinical practice,
beyond experimental settings. Furthermore, data have been
reported on the significant correlation between vitamin
status and fatty liver diseases and the effect of supplemen-
tation with 1,25(OH)2D, which significantly reduced triglyc-
eride content, lipid peroxidation, and cellular damage [47].

Current recommendations on the request
and determination of 1,25(OH)2D

The most recent and accredited recommendations on the
determination of 1,25(OH)2D are those published by an In-
ternational Federation of Clinical Chemistry and Laboratory
Medicine (IFCC) working group in 2021 [48]. The authors
highlight, in the preamble, the analytical issues, particularly
the poor standardization of methods, which have certainly
hampered its use in clinical practice. To date, its determi-
nation is suggested in the following conditions:
a) Hypercalcemia;
b) Osteomalacia and calcipenic rickets;
c) Differential diagnosis of fibroblast growth factor

23(FGF23)-mediated or non-mediated phosphopenic
rickets;

d) Genetic disorders involving CYP27B1, the VDR receptor,
and extra-renal production of 1,25(OH)2D;

e) X-linked hypophosphatemia;
f) Rare diseases such as McCune–Albright syndrome,

epidermal nevus syndrome, neurofibromatosis, Jansen
metaphyseal chondrodysplasia, and hypophosphatemic
rickets with hyperparathyroidism.

The authors also suggest not recommending the determi-
nation of 1,25(OH)2D in the monitoring of patients with
Chronic Kidney Disease (CKD), while further studies are
deemed necessary to ensure the development of a reference
method, standardization of currently available methods,
and the identification of appropriate reference values in
adults and pediatric subjects. In a more recent study, Herr-
mann [49] identified the most relevant clinical situations in
which the determination of the dihydroxylated form is
indicated, namely:
a) Hypercalcemia of unexplained nature;
b) Sarcoidosis and other granulomatous diseases;
c) Tumor-induced osteomalacia;
d) Primary hyperparathyroidism.
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Moreover, its determination is important in conditions
induced by genetic mutations that lead to altered vitamin D
metabolism and cause rare bone metabolic diseases such
as hereditary vitamin D-resistant rickets, type 1 vitamin
D-dependent rickets, idiopathic infantile hypercalcemia, and
X-linked hypophosphatemia. Giustina et al. have recently
confirmed the appropriateness of determining 1,25(OH2)D
in the aforementioned clinical situations [50]. Therefore,
given the availability of validated and automated methods,
the measurement of 1,25(OH)2D is suggested in association
with 25-OH vitamin D in numerous clinical situations, sum-
marized as shown in Table 3.

Parathyroid hormone (PTH) and
fibroblast growth factor 23 (FGF23)

The understanding of the pathophysiology regulating
calcium-phosphate metabolism has significantly advanced,
providing crucial clinical implications and leading to
more refined diagnostic testing for better classification,
prognostic indications, targeted therapies, and patient
monitoring. Notably, it has long been established that PTH
is essential for converting vitamin D into its biologically
active (dihydroxylated) form. More recent evidence high-
lights the importance of FGF23 in maintaining calcium and
phosphate homeostasis in concert with PTH and the active
form of vitamin D, 1,25(OH)2D. Elevated levels of circulating
phosphates and vitamin D stimulate FGF23 production
in bones, which in turn acts on the kidneys to bind FGF
receptors and the co-receptor Klotho, promoting phosphate
clearance (increased phosphaturia) and reducing circulating
levels of 1,25(OH)2D. Agoro and White [51] have compre-
hensively summarized these new findings. Thus, under-
standing the interconnected mechanisms regulating
calcium-phosphate homeostasis and bone metabolism un-
derpins the rationale for evaluating not just individual
parameters but their collective interactions. These disorders

are common in the general population, influenced by
genetic, metabolic, and environmental factors.

Combined determination of PTH
and vitamin D

Given the pathophysiological background, combined deter-
mination of PTH and vitamin D is particularly rational for
diagnosing hypercalcemia and hypocalcemia. In primary
hyperparathyroidism, circulating PTH levels are higher than
expected based on calcium levels alone, whereas in other
forms of hypercalcemia, PTH values are low. In secondary
hyperparathyroidism, PTH levels are elevated due to hypo-
calcemia and/or vitaminDdeficiency. Smit et al.’s review [52]
convincingly underscores the necessity of this “combined”
request for PTH and vitamin D. Particularly in diagnosing
and monitoring chronic kidney disease mineral and bone
disorders (CKD-MBD), the KDIGO 2017 [53, 54] guidelines
recommend this combination across various stages:
a) CKD stage G3a: baseline measurements of PTH, Calcium

(Ca), Phosphorus (P), and alkaline phosphatase (ALP);
Ca and P every 6–12 months; PTH to assess disease
progression.

b) CKD stage G4: PTH every 6–12 months; Ca and P every
3–6 months.

c) CKD stages G3a-G5D: Add 25-OH vitamin D and repeat
measurements based on treatment and disease pro-
gression, including collagen synthesis (Propeptide
C-terminal of type I collagen, PINP) and degradation
markers (C-terminal telopeptide of type I collagen, CTx)
in specific cases.

A critical aspect highlighting the necessity of combined PTH
and vitamin D measurement is the influence of circulating
vitamin D levels on PTH reference intervals. Literature
shows that PTH reference intervals excluding subjects
with vitamin D deficiency are approximately 20 % lower
than those including subjects with hypovitaminosis D. This
observation is well-supported and integrated into recent
PTH review [52]. Additionally, PTH levels are higher in
African Americans and those with darker skin compared to
whites, correlate with body mass index (BMI), and increase
with age due to reduced glomerular filtration volume in
individuals over 60.

Third-generation PTH

Current literature and guidelines suggest abandoning
first-generation methods and continuing the use of second-

Table : Clinical conditions in which the combinedmeasurement of both
-OHD and ,(OH)D should be recommended (from ref. [],
modified).

a) Forms of hypercalcemia without immediate clinical explanation.
b) Primary hyperparathyroidism.
c) Forms of hypovitaminosis not responding to therapy.
d) Sarcoidosis and granulomatous diseases.
e) Phosphopenic and calciopenic rickets.
f) Clinical situations that may suggest rare and genetic diseases related to
vitamin D metabolism.
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generation methods primarily due to the earlier limited
commercial availability of third-generation methods.
Analytical advantages of third-generation methods (espe-
cially Liaison 1–84 PTH) include reduced variability be-
tween matrices (serum and EDTA plasma) and lower
interference and cross-reactivity with fragments 7–84.
Clinical benefits have been demonstrated in hemodialysis
patients, with third-generation methods providing a more
accurate correlation with therapeutic response [55]. Third-
generation methods uniquely determine the biologically
active N-terminal form of PTH. In chronic kidney disease,
third-generation methods provide PTH values approxi-
mately 50 % lower than second-generation methods, with
significant intra-individual differences, as they are not
influenced by N-terminal residues [56, 57]. In clinical
practice, many academic laboratories have long adopted
third-generation methods for routine PTH determination,
demonstrating significant clinical benefits [58–60]. The most
significant evidence for using third-generation methods is
during parathyroidectomy, where PTH values drop more
rapidly post-surgery, enabling quicker and more effective
surgical evaluations [61, 62].

Fibroblast growth factor-23 (FGF23)

Discovered in 2003, mutations or excessive production
of FGF23 cause rare diseases like vitamin D-resistant hypo-
phosphatemic rickets and tumor-induced osteomalacia [63].
FGF23 is a hormone orchestrating calcium and phosphate
homeostasis alongside PTH and 1,25-dihydroxyvitamin D,
requiring the transmembrane protein Klotho. FGF23 regu-
lates phosphate homeostasis through the “FGF23/Klotho”
system [64]. Methods to determine FGF23, measuring intact
(iFGF23) and C-terminal (cFGF23) fragments, have increased
its clinical relevance, particularly in chronic kidney disease,
cardiovascular diseases, and erythropoiesis regulation
[65–67]. Determining both FGF23 forms and the iFGF23/
cFGF23 ratio is proposed as a “liquid biopsy” for FGF23
dynamics [67]. Given the therapeutic potential of the FGF23/
Klotho axis, clinical determination of circulating levels is
increasingly important [68, 69].

Conclusions

Despite a long history, the saga of vitamin D measurement
and supplementation requires further attention. First, the
lack of analytical standardization strongly affects data on
decision levels, as they were obtained in clinical trials which

used non-standardized assays. The current availability of
reference procedure measurements (RPM) and reference
materials allows to identify evidence-based decision levels
to be applied in clinical practice and laboratory reports.
Therefore, harmonization of currently recommended deci-
sional levels and of measurement units is mandatory to
avoid further confusion and to allow the right interpretation
of laboratory results. Second, the adoption of current rec-
ommendations on the appropriate request of vitamin D
measurement is needed. Third, even if still controversial, the
adherence to current recommendations on the categories of
individuals/patients who benefit from vitamin D supple-
mentation is strongly suggested. Recent evidence collected
on sunscreen use as an integral part of prevention programs
aimed at reducing ultraviolet (UV) radiation-induced skin
damage and skin cancers highlight that vitamin D levels are
not significantly affected by the regular use of this type of
sun protection factors [70]. Fourth, the integrated evaluation
of laboratory tests (e.g. 25(OH)D, calcium, phosphorus, PTH,
and in selected cases 1,25(OH)2D and FGF-23) is recom-
mended or an appropriate interpretation of bone meta-
bolism disorders.
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